A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration.

نویسندگان

  • Alex Nechiporuk
  • Mark T Keating
چکیده

Previous studies of zebrafish fin regeneration led to the notion that the regeneration blastema is a homogeneous population of proliferating cells. Here, we show that the blastema consists of two components with markedly distinct proliferation properties. During early blastema formation, proliferating cells are evenly distributed. At the onset of regenerative outgrowth, however, blastemal cells are partitioned into two domains. Proximal blastemal cells proliferate at a high rate, shifting from a median G(2) of more than 6 hours to approximately 1 hour. By contrast, the most distal blastemal cells do not proliferate. There is a gradient of proliferation between these extremes. Using bromodeoxyuridine incorporation and anti-phosphohistone H3 labeling, we find a 50-fold difference in proliferation across the gradient that extends approximately 50 microm, or ten cell diameters. We show that during early regeneration, proliferating blastemal cells express msxb, a homeodomain transcriptional repressor. While msxb is widely expressed among proliferating cells during blastema formation, its expression becomes restricted to a small number of non-proliferating, distal blastemal cells during regenerative outgrowth. Bromodeoxyuridine pulse-chase experiments show that distal and proximal blastemal cells are formed from proliferating, msxb-positive blastemal cells, not from preexisting slow-cycling cells. These data support the idea that blastema formation results from dedifferentiation of intraray mesenchymal cells. Based on these findings, we propose a new model of zebrafish fin regeneration in which the function of non-proliferating, msxb-expressing, distal blastemal cells is to specify the boundary of proliferation and provide direction for regenerative outgrowth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish.

To study the genetic regulation of growth control and pattern formation during fin development and regeneration, we have analysed the expression of four homeobox genes, msxA, msxB, msxC and msxD in zebrafish fins. The median fin fold, which gives rise to the unpaired fins, expresses these four msx genes during development. Transcripts of the genes are also present in cells of the presumptive pe...

متن کامل

Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration.

One possible reason why regeneration remains enigmatic is that the dominant organisms used for studying regeneration are not amenable to genetic approaches. We mutagenized zebrafish and screened for temperature-sensitive defects in adult fin regeneration. The nightcap mutant showed a defect in fin regeneration that was first apparent at the onset of regenerative outgrowth. Positional cloning re...

متن کامل

Activin-betaA signaling is required for zebrafish fin regeneration.

Vertebrate limb regeneration occurs in anamniotes such as newts, salamanders, and zebrafish. After appendage amputation, the resection site is covered by a wound epidermis capping the underlying mature tissues of the stump from which the blastema emerges. The blastema is a mass of progenitor cells that constitute an apical growth zone. During outgrowth formation, the proximal blastemal cells pr...

متن کامل

Osteoblast de- and redifferentiation are controlled by a dynamic response to retinoic acid during zebrafish fin regeneration.

Zebrafish restore amputated fins by forming tissue-specific blastema cells that coordinately regenerate the lost structures. Fin amputation triggers the synthesis of several diffusible signaling factors that are required for regeneration, raising the question of how cell lineage-specific programs are protected from regenerative crosstalk between neighboring fin tissues. During fin regeneration,...

متن کامل

Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration.

Zebrafish have the capacity to regenerate several organs, including the heart and fins. Fin regeneration is epimorphic, involving the formation at the amputation plane of a mass of undifferentiated, proliferating mesenchymal progenitor-like cells, called blastema. This tissue provides all the cell types that form the fin, so that after damage or amputation the fin pattern and structure are full...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 129 11  شماره 

صفحات  -

تاریخ انتشار 2002